人气

【笛卡尔】笛卡尔我思故我在_笛卡尔坐标系

笛卡尔

人物简介   笛卡儿(英文Rene Descartes),公元1596~公元1650,著名的法国哲学家、科学家和数学家。西方近代哲学的奠基人之一,解析几何的创始人。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。笛卡尔堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。笛卡尔是二元论的代表,留下名言“我思故我在”,提出了“普遍怀疑”的主张,是欧洲近代哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。
  
人物生平
  童年
  1596年3月31日,笛卡尔出生在法国安德尔-卢瓦尔省的图赖讷拉海(现为笛卡尔)。他出身于地位较低的贵族家庭,父亲Joachim是雷恩的布列塔尼议会的议员,同时也是地方法院的法官。
  1岁多时母亲患肺结核去世,而他也受到传染,造成体弱多病。笛卡尔因从小多病,但是家境富裕从而使学校允许他在床上早读。母亲去世后,父亲移居他乡并再婚,而把笛卡尔留给了他的外祖母带大,自此父子很少见面,但是父亲一直提供金钱方面的帮助,使他能够受到良好的教育,追求自己的兴趣而不用担心经济来源问题。也因此养成终生沉思的习惯和孤僻的性格。父亲见他颇有哲学家的气质,亲昵地称他为“小哲学家”。
  1606或1607年,父亲希望笛卡尔将来能够成为一名神学家,于是在笛卡尔八岁时将其送入欧洲最有名的贵族学校──位于拉弗莱什的耶稣会的皇家大亨利学院学习。校方为照顾他孱弱的身体,特许他不必受校规的约束,早晨不必到学校上课,可以在床上读书 。因此,他从小养成了喜欢安静,善于思考的习惯。他在该校学习8年,接受了传统的文化教育,学习了古典文学、历史、神学、哲学、法学、医学、数学及其他自然科学。他学习到了数学和物理学,包括伽利略的工作。但他对所学的东西颇感失望,因为在他看来教科书中那些微妙的论证,其实不过是模棱两可甚至前后矛盾的理论,只能使他顿生怀疑而无从得到确凿的知识,惟一给他安慰的是数学。
  这里有一段关于哲学家笛卡儿论星星的趣话。有一次笛卡儿坐在自己屋前的台阶上,正在凝视着落日后昏暗的地平线。一个过路人走近他的身旁,问道:“喂!聪明人,请问,天上有多少颗星星?”他回答道:“蠢人!谁也不能拥抱那无边无际的东西……”
  青年
  1616年12月毕业后,他遵从他父亲希望他成为律师的愿望,进入普瓦捷大学学习法律与医学,对各种知识特别是数学深感兴趣,并获得业士学位和文凭。毕业后笛卡尔一直对职业选择不定,又决心游历欧洲各地,专心寻求“世界这本大书”中的智慧。
  1618年,笛卡尔加入荷兰拿骚的毛里茨的军队。但是荷兰和西班牙之间签订了停战协定,于是笛卡尔利用这段空闲时间学习数学。在军队服役和周游欧洲期间他继续注意“收集各种知识”,“随处对遇见的种种事物注意思考”。在笛卡尔的时代,拉丁文是学者的语言。他也如当时的习惯,在他的著作上签上他的拉丁化的名字——Renatus Cartesius(瑞那图斯·卡提修斯)。正因为如此,由他首创的笛卡尔坐标系也称卡提修坐标系。
  笛卡尔对结合数学与物理学的兴趣,是在荷兰当兵期间产生的。
  1618年11月10日,他偶然在路旁公告栏上,看到用佛莱芒语提出的数学问题征答。这引起了他的兴趣,并且让身旁的人,将他不懂的佛莱芒语翻译成拉丁语。这位身旁的人就是大他八岁的以撒·贝克曼(Isaac Beeckman)。贝克曼在数学和物理学方面有很高造诣,很快成为了他的导师。4个月后,他写信给贝克曼:“你是将我从冷漠中唤醒的人……”,并且告诉他,自己在数学上有了4个重大发现。
  据说,笛卡尔曾在一个晚上做了三个奇特的梦。第一个梦是,笛卡尔被风暴吹到一个风力吹不到的地方;第二个梦是他得到了打开自然宝库的钥匙;第三个梦是他开辟了通向真正知识的道路。这三个奇特的梦增强了他创立新学说的信心。这一天是笛卡儿思想上的一个转折点,也有些学者把这一天定为解析几何的诞生日。
  1621年笛卡尔退伍回国,时值法国内乱,于是在1622年,时年26岁的笛卡尔变卖掉父亲留下的资产,用4年时间游历欧洲,其中在意大利住了2年,随后于1625年迁住于巴黎。因为在当时的法国教会势力庞大,不能自由讨论宗教问题。
  1628年笛卡尔移居荷兰,在那里住了20多年。在此期间,笛卡尔对哲学、数学、天文学、物理学、化学和生理学等领域进行了深入的研究且致力于哲学研究发表了多部重要的文集,并通过数学家梅森神父与欧洲主要学者保持密切联系。
  他的主要著作几乎都是在荷兰完成的。
  1628年,写出《指导哲理之原则》。
  1634年完成了以尼古拉·哥白尼学说为基础的《论世界》。书中总结了他在哲学、数学和许多自然科学问题上的一些看法。
  1637年,用法文写成三篇论文《屈光学》、《气象学》和《几何学》,并为此写了一篇序言《科学中正确运用理性和追求真理的方法论》,哲学史上简称为《方法论》(Discours de la méthode)(1637)。6月8日在莱顿匿名出版。
  《哲学原理》(les Principes de la philosophie)(1644)
  《形而上学的沉思》(Méditations métaphysiques)(1641)等就此笛卡尔成为欧洲最有影响力的哲学家之一。
  离世
  1650年2月去世,享年54岁。终生未婚。由于教会的阻止,仅有几个友人为其送葬。死后还出版有《论光》(1664)等。
  1663年他的著作在罗马和巴黎被列入梵蒂冈教皇颁布的禁书目录之中。
  但是,他的思想的传播并未因此而受阻,笛卡尔成为17世纪及其以后对欧洲哲学界和科学家最有影响的巨匠之一。1740年,巴黎才解除了禁令,那是为了对当时在法国流行起来的牛顿世界体系提供一个替代的东西。
  1789年法国大革命后,笛卡尔的骨灰和遗物被送进法国历史博物馆。
  1819年,其骨灰被移入圣日耳曼圣心堂中。
  他的哲学与数学思想对历史的影响是深远的。人们在他的墓碑上刻下了这样一句话:“笛卡尔,欧洲文艺复兴以来,第一个为人类争取并保证理性权利的人。”
  
笛卡尔坐标系
  笛卡尔坐标系(Cartesian coordinates)(法语:les coordonnées cartésiennes)就是直角坐标系和斜角坐标系的统称。
  相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
  二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标 是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。
  采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。
  笛卡尔和笛卡尔坐标系的产生
  据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表示平面上的一个点,平面上的一个点也可以有用一组两个有顺序的数来表示,这就是坐标系的雏形。
  直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念用数来表示,几何图形也可以用代数形式来表示。由此笛卡尔在创立直角坐标系的基础上,创造了用代数的方法来研究几何图形的数学分支——解析几何, 他大胆设想:如果把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特征的点组成的。举一个例子来说,我们可以把圆看作是动点到定点距离相等的点的轨迹,如果我们再把点看作是组成几何图形的基本元素,把数看作是组成方程的解,于是代数和几何就这样合为一家人了。
  
笛卡尔名言
  读杰出的书籍,有如和过去最杰出的人物促膝交谈
  读一切好书,就是和许多高尚的人谈话
  仅仅具备出色的智力是不够的,主要的问题是如何出色地使用它
  世界之大,而能获得最公平分配的是常识
  我思故我在
  要以探求真理为毕生的事业
  意志、悟性、想象力以及感觉上的一切作用,全由思维而来
  越学习,越发现自己的无知
  当感情只是劝我们去做可以缓行的事的时候,应当克制自己不要立刻作出任何判断,用另一些思想使自己定一定神,直到时间和休息使血液中的情绪完全安定下来
  一个为情感所支配,行为便没有自主之权,而受命运的宰割
  只有服从理性,我们才能成人
  
人物评价
  笛卡尔在哲学上是二元论者,并把上帝看作造物主。但笛卡尔在自然科学范围内却是一个机械论者,这在当时是有进步意义的。
  笛卡尔是欧洲近代哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。
  笛卡尔的方法论对于后来物理学的发展有重要的影响。他在古代演绎方法的基础上创立了一种以数学为基础的演绎法:以唯理论为根据,从自明的直观公理出发,运用数学的逻辑演绎,推出结论。这种方法和培根所提倡的实验归纳法结合起来,经过惠更斯和牛顿等人的综合运用,成为物理学特别是理论物理学的重要方法。作为他的普遍方法的一个最成功的例子,是笛卡尔运用代数的方法的来解决几何问题,确立了坐标几何学即解析几何学的基础。
  笛卡尔的方法论中还有两点值得注意。第一,他善于运用直观“模型”来说明物理现象。例如利用“网球”模型说明光的折射;用“盲人的手杖”来形象地比喻光信息沿物质作瞬时传输;用盛水的玻璃球来模拟并成功地解释了虹霓现象等。第二,他提倡运用假设和假说的方法,如宇宙结构论中的旋涡说。此外他还提出“普遍怀疑”原则。这一原则在当时的历史条件下对于反对教会统治、反对崇尚权威、提倡理性、提倡科学起过很大作用 。
  笛卡尔堪称17世纪及其后的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
分享
腾讯微博
QQ空间
QQ好友
新浪微博