首页 > 1951年 > 5月6日 > 法国数学家埃利·嘉当逝世

法国数学家埃利·嘉当逝世

浅草 2016-03-03
\

埃利·约瑟夫·嘉当
  1951年5月6日,法国数学家埃利·约瑟夫·嘉当逝世。
  埃利·嘉当,亦译作埃里,卡当(Joseph Cartan,1869年4月9日─1951年5月6日),法国数学家。嘉当生于萨瓦的多洛姆厄,在1888年成为巴黎的巴黎高师的一名学生。他在李群理论和其几何应用方面奠定基础。他也对数学物理,微分几何、群论做出了重大贡献。
  在1894年取得博士学位后,他在蒙比利艾和里昂任教,并于1903年在南锡当上教授。他在1909年到巴黎任教,并于1912年成为教授,而在1942年退休。他卒于巴黎。数学家亨利·嘉当是他的儿子。曾指导过华人数学家陈省身
  据他自己在“科研简介”(Notice sur les travaux scientifiques)所作的描述,他的工作(总数达186,发表于1893-1947年间)的主题是李群的理论。他从在复的简单李代数上的基础材料上的工作开始,把恩格尔(Christian Engel)和基令(Wilhelm Killing)先前的工作整理起来。这被证明是有决定性意义的,至少对于分类来讲,他鉴定出4个主要的族和5个特殊情况。他也引入了代数群的概念,它在1950年之前并没有被认真地发展过。
  他也定义了反对称微分形式的一般概念,以我们现在所使用的风格;他通过马尤厄-嘉当方程处理李群的方式要用到2-形式来表达。那时,称为Pfaffian系统(也就是用1-形式表达的1阶微分方程组)的概念很常用;通过引入表示导数的新变量,和额外的微分形式,他们可以表述很一般的偏微分方程(PDE)系统。嘉当加入了外导数,作为一个完全几何式的坐标无关的操作。这很自然导致了对于一般的p讨论p-形式的需要。嘉当描述了Riquier的一般PDE理论对他的影响。
  基于这些基础 – 李群和微分形式 – 他继续深入完成了大量工作,以及一些通用的技术,例如移动标架法,这些逐渐融入到数学的主流中。

日期选择